A novel technique based on in vitro oocyte injection to improve CRISPR/Cas9 gene editing in zebrafish
نویسندگان
چکیده
Contemporary improvements in the type II clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system offer a convenient way for genome editing in zebrafish. However, the low efficiencies of genome editing and germline transmission require a time-intensive and laborious screening work. Here, we reported a method based on in vitro oocyte storage by injecting oocytes in advance and incubating them in oocyte storage medium to significantly improve the efficiencies of genome editing and germline transmission by in vitro fertilization (IVF) in zebrafish. Compared to conventional methods, the prior micro-injection of zebrafish oocytes improved the efficiency of genome editing, especially for the sgRNAs with low targeting efficiency. Due to high throughputs, simplicity and flexible design, this novel strategy will provide an efficient alternative to increase the speed of generating heritable mutants in zebrafish by using CRISPR/Cas9 system.
منابع مشابه
فناوری ویرایش ژن کریسپر ـ کَس 9 از منظر حقوق مالکیت فکری و ایمنی زیستی
In recent years, inexpensive and fruitful gene editing techniques such as CRISPR-Cas9 and NaAgo have revolutionized the biotechnology industry. Genetically edited organisms, gene therapy, treatment of diseases such as AIDS and editing human cells are some of the marvelous applications of such technologies. Using such technologies in large scale or granting exclusive rights on their products or ...
متن کاملSynthesis a New Viral Base Vector Carrying Single Guide RNA (sgRNA) and Green Florescent Protein (GFP)
CRISPR/Cas9 system is a powerful gene editing tool in vivo and in vitro. Currently, CRISPR/Cas9 delivery cells or tissue with different vehicles are available, and Adeno- associated virus (AAV) in one of them. Due to AAV packaging size limitation, AAV base vectors that carry CRISPR/Cas9 system do not have florescent tag like GFP for simple detection and navigation of cells, containing AAV. The ...
متن کاملDeveloping oncolytic Herpes simplex virus type 1 through UL39 knockout by CRISPR-Cas9
Objective(s): Oncolytic Herpes simplex virus type 1 (HSV-1) has emerged as a promising strategy for cancer therapy. However, development of novel oncolytic mutants has remained a major challenge owing to low efficiency of conventional genome editing methods. Recently, CRISPR-Cas9 has revolutionized genome editing.Materials and Methods: I...
متن کاملCRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line
Objective(s): Multidrug resistance (MDR) is a major obstacle in the successful chemotherapy of ovarian cancer. Inhibition of P-glycoprotein (P-gp), a member of ATP-binding cassette (ABC) transporters, is a well-known strategy to overcome MDR in cancer. The aim of this study was to investigate the efficiency and ability of CRISPR/Cas9 genome editing technology to knockdown ABCB1 gene expression ...
متن کاملEfficient Production of Biallelic RAG1 Knockout Mouse Embryonic Stem Cell Using CRISPR/Cas9
Background: Recombination Activating Genes (RAG) mutated embryonic stem cells are (ES) cells which are unable to perform V (D) J recombination. These cells can be used for generation of immunodeficient mouse. Creating biallelic mutations by CRISPR/Cas9 genome editing has emerged as a powerful technique to generate site-specific mutations in different sequences. Ob...
متن کامل